Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 38(1): 55-58, Jan. 2005. graf
Article in English | LILACS | ID: lil-405546

ABSTRACT

We studied the effects of infusion of nerve growth factor (NGF) into the hippocampus and entorhinal cortex of male Wistar rats (250-300 g, N = 11-13 per group) on inhibitory avoidance retention. In order to evaluate the modulation of entorhinal and hippocampal NGF in short- and long-term memory, animals were implanted with cannulae in the CA1 area of the dorsal hippocampus or entorhinal cortex and trained in one-trial step-down inhibitory avoidance (foot shock, 0.4 mA). Retention tests were carried out 1.5 h or 24 h after training to measure short- and long-term memory, respectively. Immediately after training, rats received 5 æl NGF (0.05, 0.5 or 5.0 ng) or saline per side into the CA1 area and entorhinal cortex. The correct position of the cannulae was confirmed by histological analysis. The highest dose of NGF (5.0 ng) into the hippocampus blocked short-term memory (P < 0.05), whereas the doses of 0.5 (P < 0.05) and 5.0 ng (P < 0.01) NGF enhanced long-term memory. NGF administration into the entorhinal cortex improved long-term memory at the dose of 5.0 ng (P < 0.05) and did not alter short-term memory. Taken as a whole, our results suggest a differential modulation by entorhinal and hippocampal NGF of short- and long-term memory.


Subject(s)
Animals , Male , Rats , Entorhinal Cortex/drug effects , Hippocampus/drug effects , Memory/drug effects , Nerve Growth Factor/pharmacology , Avoidance Learning/drug effects , Entorhinal Cortex/physiology , Hippocampus/physiology , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Memory/physiology , Rats, Wistar , Retention, Psychology/drug effects
2.
Braz. j. med. biol. res ; 30(2): 235-40, Feb. 1997. ilus, graf
Article in English | LILACS | ID: lil-188432

ABSTRACT

A total of 182 young adult male Wistar rats were bilaterally implanted with cannulae into the CA1 region of the dorsal hippocampus and into the amygdaloid nucleus, the entorhinal cortex, and the posterior parietal cortex. After recovery, the animals were trained in a stepdown inhibitory avoidance task. At various times after training (0, 30, 60 or 90 min) the animals received a 0.5-mul microinfusion of vehicle (saline) or O.5 mug of muscimol dissolved in the vehicle. A retention test was carried out 24 h after training. Retention test performance was hindered by muscimol administered into both the hippocampus and amygdala at 0 but not at 30 min posttraining. The drug was amnestic when given into the entorhinal cortex 30, 60 or 90 min after training, or into the parietal cortex 60 or 90 min after training, but not before. These findings suggest a sequential entry in operation, during the posttraining period, of the hippocampus and amygdala, the entorhinal cortex, and the posterior parietal cortex in memory processing.


Subject(s)
Rats , Male , Animals , Amygdala/physiology , Entorhinal Cortex/physiology , Hippocampus/physiology , Memory/physiology , Muscimol/pharmacology , Parietal Lobe/physiology , Amygdala/drug effects , Entorhinal Cortex/drug effects , Hippocampus/drug effects , Parietal Lobe/drug effects , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL